Activation of Secondary Metabolism in Citrus Plants Is Associated to Sensitivity to Combined Drought and High Temperatures
نویسندگان
چکیده
Drought and heat stresses are two of the most frequent environmental factors that take place simultaneously in the field constraining global crop productivity. Metabolism reconfiguration is often behind the adaptation of plants to adverse environmental conditions. Carrizo citrange and Cleopatra mandarin, two citrus genotypes with contrasting ability to tolerate combined heat and drought conditions, showed different metabolite patterns. Increased levels of phenylpropanoid metabolites were observed in Cleopatra in response to stress, including scopolin, a metabolite involved in defense mechanisms. Tolerant Carrizo accumulated sinapic acid and sinapoyl aldehyde, direct precursors of lignins. Finally, Cleopatra showed an accumulation of flavonols and glycosylated and polymethoxylated flavones such as tangeritin. The activation of flavonoid biosynthesis in Cleopatra could be aimed to mitigate the higher oxidative damage observed in this genotype. In general, limonoids were more severely altered in Cleopatra than in Carrizo in response to stress imposition. To conclude, all metabolite changes observed in Cleopatra suggest the activation of energy metabolism along with metabolic pathways leading to the accumulation of photoprotective and antioxidant secondary metabolites, oriented to mitigate the damaging effects of stress. Conversely, the higher ability of Carrizo to retain a high photosynthetic activity and to cope with oxidative stress allowed the maintenance of the metabolic activity and prevented the accumulation of antioxidant metabolites.
منابع مشابه
Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus
Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS). Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the...
متن کاملAntioxidant capacity and chemical composition of Carum copticum under PEG treatment. Roya Razavizadeh*1 and Mozhdeh Karami2
Drought stress is one of the main non-biological factors limiting the growth and yield of plants in dry and semi-dry regions of the world. Plants are the source of much chemicals derived from secondary metabolism. Carum copticum is a plant from the Apiaceae family with the seeds containing 2-4% the essential oil which are rich in monoterpenes such as thymol and are widely used as an antibacteri...
متن کاملAdvances on High Temperature Pd-Based Membranes and Membrane Reactors for Hydrogen Purifcation and Production
Membrane technology applied in the chemical and energy industry has the potential to overcome many drawbacks of conventional technologies such as the need of large volume plants and large CO2 emissions. Recently, it has been reported that this technology might become more competitive...
متن کاملMechanisms of drought stress tolerance in cool season grasses
Drought stress is one of the most limiting abiotic stresses affecting growth, production and survival of plants in many areas of the world, and is expected to intensify considering the trend of climate change. Grass species are important for the sustainability of agricultural systems, forage resources for animal farming and landscapes. Grass species adapt to water deficit by different morpholog...
متن کاملبررسی آثار تنش خشکی در محیط مادری بر دماهای کاردینال و جوانهزنی بذر گونههای مختلف جنس Carthamus
Safflower (Carthamustinctorius L.) is one of the oldest domesticated crops, mainly grown as an oilseed in the arid and semiarid regions of the world. This study was conducted to investigate the Cardinal temperatures and to identify the effects of occurrence of drought stress in maternal environment on seed germination aspects of some Carthamus species according to a completely randomized design...
متن کامل